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On the Diffusion of a Fast Molecule 
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We consider the motion of a heavy particle in interaction with an infinite ideal 
gas of slow atoms. We prove that the velocity of the heavy particle is, in a 
suitable limit, modeled by a deterministic process. We also treat the process of 
rescaled velocity fluctuations around a certain deterministic motion and show 
that this is appropriately modeled by a nonhomogeneous diffusion process. 
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1. I N T R O D U C T I O N  

Attention has recently been given to modeling the motion of a heavy par- 
ticle (piston, molecule) in a gas of atoms by a diffusion process. Using an 
uncontrolled Markovian approximation, Miller and Stein argue in Ref. 6 
that the behavior of the piston can be divided into three regimes. First, if 
the speed of the piston is much less than the speed of the atoms, its velocity 
should, be modeled by the Ornstein-Uhlenbeck process. When the piston's 
speed is on the order of or much larger than the speed of the atoms, the 
appropriate model for the velocity of the piston is deterministic. In these 
latter cases, they also argue that the rescaled velocity fluctuations around 
the deterministic motion should be modeled by nonhomogeneous diffusion 
processes. 

The motion of the slow molecule has been rigorously (i.e., with no 
Markovian assumption) treated by Holley (4) in one dimension and by 
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Diirr, Goldstein, and Lebowitz (2) in any dimension. They establish the con- 
vergence of the mechanical, non-Markovian process describing the velocity 
of the molecule to the Ornstein-Uhlenbeck process in a limit in which the 
molecule becomes very heavy. 

We here treat rigorously the motion of a fast molecule in one dimen- 
sion. The physical situation is as follows: We consider the motion of a 
heavy molecule of mass M in an infinite ideal gas of point particles of mass 
m with which the molecule interacts via elastic collisions. The initial 
position and velocity of the molecule may be chosen arbitrarily. We wish to 
describe the motion of the molecule in the limit where m ~ 0, the gas has 
density p ~ m  -1, and velocity distribution fro(v) = m-'~f(m-~v) for 7 > 0, 
where f(v) is absolutely continuous with respect to Lebesgue measure and 
has all moments finite. We thus consider the sequence of stochastic 
processes Vm,t where V,~.t is the velocity of the molecule at time t in a bath 
of atoms of mass m. We prove in the limit m--* 0 that Vm.t--* V(t), the 
limiting deterministic process. We also consider the scaled deviations era( t )  
of Vm,~ from a suitable deterministic process Pro.t, depending on m, which 
converges to V(t) as m ~ 0. We show ~m(t) converges in distribution to a 
nonhomogeneous diffusion process. 

We also wish to note that for 7 > • the scaled deviations could have 2~ 
been defined with respect to V(t), fi la Van Kampen(7); and to emphasize 
that for 7 < �89 the scaled deviations from V(t) are divergent as m ~ 0 since 
the fluctuations of Vm., around its mean { Vm,, }, which are of order x/-~, 
are much smaller than the distance of (Vm.,} (equivalently of P,~(t)) from 
if(t), which is of order m r in this case. 

The outline of the paper, which is based on the techniques of Ref. 2, is 
as follows: In Section 2 we describe the model more precisely. In Section 3 
the main results are presented. Sections 4-6 contain the proofs of the 
results. In Section 6 we show that the mechanical model can be well 
approximated by a Markov process as m ~ 0, the central idea in the proof. 

Though we have not examined carefully the case of two or more 
dimensions, we believe our results should extend to these cases. 

2. THE M E C H A N I C A L  M O D E L  

In what follows the heavy point particle will be called the molecule 
and the light particles will be called atoms. Let F =  N x R denote the one 
particle phase space, N(F)  its Borel algebra, and ]~m the absolutely con- 
tinuous measure on F defined by 

dpm=pmdqfm(v)dv q, v e ~  (2.1) 
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where 

and 

~o m 
p~ = - ,  p > 0 and c~ = (2.2) 

c~ m +  M 

f ~ ( v )  = m ~f(m -'tv) 7 > 0 (2.3) 

We assume that the velocity distribution has all moments finite, i.e., 
~ l v l " f ( v ) d v < o v  for n e Z  +, as, for example, in the Maxwellian dis- 
tribution where f ( v )  = (mfl/2~) 1/2 e ~m~2/2, fl > O. 

An ideal gas of atoms of mass m is described by a Poisson field 
(g2, ~ ,  Pro) built on (F, N(F),/~m): If NB = the number  of atoms with coor- 
dinates (q, v ) ~ B ,  B e ~ ( F ) ,  then NB is Poisson with m e a n  f ire(B) 

~m{ /co ~ g21N~(co) = k]  } = exp[  - # m ( B ) ]  - -  (2.4) 
k~ 

where co represents a configuration of countably many atoms, i.e., co = 
(qi, vi)iE ~. It follows that if BI,..., Bn are pairwise disjoint sets that the ran- 
dom variables N~, are independent. We can think of this Poisson field as 
describing atoms independently distributed in position space with density 
Pm and having independent velocities distributed according to fro(V). 

The scaling o f f ( v )  is such that the speed of the atoms is like m ~ and 
hence tends to zero as m tends to zero, 

Let us put a molecule of mass M, M > m, at position X ~ with velocity 
V ~ V ~ > 0, in the gas. Assuming the collisions between the molecule and 
the atoms are elastic, conservation of energy and momentum relate the 
precollision (V, v) and post-collision (V', v') velocities as follows: 

V' = V+ 2c~(v- V) 
(2.5) 

v' = v + 2c~( V -  v ) ( m / m )  

For  each co~l?, we can define the velocity of the molecule Vm.t(co) 
[ =- Vm(t, co)] as a right continuous function of t in this way: The molecule 
starts with velocity V ~ Let rl(co) denote the time of the first collision. 
V,,,~(co)= V ~ for all t<~l(co)  and then changes to a new velocity V' 
according to (2.5), Afterwards the molecule moves freely with velocity V' 
until r2(co), the time of the next collision. 

Infinitely many collisions in a finite amount  of time, as well as 
simultaneous collisions of two or more atoms with the molecule can be 
ignored, (2'8) so that the motion of the molecule is well defined by the above 
prescription. 
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For any I =  [0, T], 0 < T <  0% let D(I) denote the space of right con- 
tinuous functions with left limits defined on L equipped with the Skorohod 
topology. (1) Let M[D(I ) ]  denote the Borel a algebra. 

We can define Vm,, as a stochastic process Vm:f2~D(I) ,  where 
Vm((D ) = Vm,.(r ). V m induces a measure Pm on D(I): 

Pm(A)=Pm({CO[Vm(CO)~A}) for all A~M[D(I ) ]  

Note that Vm is not Markovian since there are configurations of the 
bath which lead to recollisions between the atoms and the molecule. 

We are now ready to state our results. 

3. R E S U L T S  

Let i be 
equation 

the deterministic process described by the differential 

d i  
d---[ = - 2 p V I V I  where 9(0) = V ~ (3.1) 

with solution 
v o 

if(t)  - (3.2) 
l + 2 p  I V ~  

Let Pm (m ~ O) and P be probability measures on {D(I), N [ D ( I ) ]  }. 
Pm is said to converge weakly to P (Pm ~m ~ 0 P) if for all bounded, con- 
tinuous real functions h on D(I), limm ~ o S h dPm = ~ h dP. Equivalently, 
lim infm Pm(G)>~ P(G) for all open sets G. We say that the process Xm(t), 
t~>0, converges in distribution t o  the process X(t), t )O ,  and write 
X m ::=> -@ m-,0 X, if for each interval, I, pXm =~m sO pX, where pXm(pX) is the 
distribution of Xm(X) on D(I). 

T h e o r e m  3.1 Vm ~ i ,  where Vm is the molecular velocity �9 m ~ 0  

process with Vm(O)= V ~ and i is the deterministic process described by 
(3.1). 

Let ira(t) be the deterministic process satisfying the differential 
equation 

dim 
dt = Om(im) (3.3) 

where 

oo 

(3.4) 
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and define the fluctuation process ~m by 

vm(t)- P,.(t) 
~m(t) = ~ (3.5) 

The ~m process describes the scaled deviations of the molecular velocity 
from Vm, which may be interpreted as the "deterministic part" of Vm (see 
Eq. (5.4)). It follows easily, e.g., from the proof of Theorem 3.1, that Vm 
approaches V as m ~ 0. 

Let ~(t) be the nonhomogeneous diffusion process whose generator B 
restricted to the set of infinitely differentiable functions of compact support, 
is given by 

- ~ 02 
= - 4 p ~ V ( t )  +2p  I V(t)l 3 (3.6) B, I c,~ 0~2 

T h e o r e m  3.2.  ~m(t) ~ , , ~ o  r where ~m(0)= ~(0) =0. 

As in Ref. 2 we are concerned with the convergence of non-Markovian 
processes to a Markov process. Employing the same techniques as in Ref. 2 
we will prove our theorems in two steps. To prove Theorem 3.1 we will first 
modify the mechanical process and consider an abstract Markov process 
~'m for which we will prove 

~'rn ==~m~0 V (3.7) 

The second step will be to establish the closeness of paths of a suitable 
realization V" (possibly depending on I) of ~'m to the paths of Vm as 
m --+ 0. V" and Vm are realized on the same probability space (f2, ~ ,  Pm) 
in such a way that for all e > 0 and any I 

lira ~m({~lsuplV'm(t, cO)--Vm(t,~)l~e})=O (3.8) 
m ~ O  t e I  

Theorem 3.1 follows easily from (3.7) and (3.8). Theorem 3.2, though 
slightly more complicated since ~(t) is time inhomogeneous, is proved by 
similar considerations. 

4. T H E  M A R K O V  A P P R O X I M A T I O N  

We shall now define the Markov process ~'m. 

L e m m a  4.1. Suppose that at time t the molecule has velocity V 
and is surrounded by a bath of atoms having a Poisson distribution 
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described in (2.4). The probability pm(dt, dr, V) for a collision between an 
atom with velocity v E dv and the molecule in time (t, t + dt) is given by 

pro(dr, dr, v)= p,~ Iv- vt dtf~(v)dv (4.1) 

Proof. Recall that the probability of finding a particle in the q - v  
phase space is given by Pm dqfm(V) d~). For the occurrence of a collision in 
the v -  t phase space we get Pm I v -- VI dt fm(V) dr. 

We define an abstract Markov process using the collision rates of 
(4.1). More precisely, we set 

Nm(V) = Iv - VI fro(v) dv (4.2) 
- -  c J o  

and let 

1 
gin( V, v ) = - - I v -  VI fm(V) (4.3) 

Nm(V) 

Set 

Pm(V) = pmNm(V) (4.4) 

Note that Pro(V) dt g,n( V, v) dv = pm( dt, dr, V). Using the collision 
equations (2.5) we can transform gm(V,v )  into a transition kernel 
Nm( V, dV) giving the jump probability from V to V' ~ dV in one collision. 

Definition 4. I. Let Vm be the Poisson jump process defined on the 
probability space (f2, i f ,  Pro) with mean waiting time tim(V) 1 and trans- 
ition probability Nm(V, dV) and Vm(0)= V ~ Let Pm denote the measure 
induced by Vm on {D(I), ~3[D(I)]}. Let ~m=(P, ,  - ~'m)/Xf~ be the fluc- 
tuation process for the Markov approximation. 

In Section 5 we will prove the following two lemmas: 

Lemma 4.2. ~'m ~ 0  P- 

Lemma 4.3. ~m ~ ~. r n ~ 0  

5. PROOFS OF L E M M A S  4.2 A N D  4.3 

Let us first recall some basic facts about probability semigroups. What 
is presented here may be found in Dynkin (3) and Kurtz. (5) Let _Z denote a 
Markov process on D(I) having transition probability Qt(x, dy). To _Z 
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corresponds a contraction semigroup T~ defined on B, the Banach space of 
bounded, measurable functions h: N --, N with sup norm Ifll, 

t" 

T,h(x) = j~ h(y) Q,(x, dy) 

Let Co denote the Banach subspace of B consisting of continuous functions 
vanishing at infinity. Suppose Co is invariant under T~ and T~ on Co is con- 
tinuous: T, CoC_Co and lim,~0 ]lT, h-hH = 0  for all h~Co. Then _Z is a 
Markov Co process. 

We define the (infinitesimal) generator A of the semigroup T~ by 

Ah = lim T _~h h 
(5.1) 

t ~ 0  l 

and ~A, the domain of A, consists of all h s B  (Co for a Markov Co 
process) for which the limit exists in the sup-norm topology. 

In order to prove Lemmas 4.2 and 4.3 we will use a theorem due to 
Kurtz (5) formulated in a more general setting which relates convergence of 
processes in distribution to strong convergence of generators on a core. 

Lemma 5.1. Consider a sequence Z. of Markov processes with 
sample paths in D(I) and generators A,. Suppose _Z is a Markov Co 
process with sample paths in D(I) and generator A. Let K be a core for A 
and suppose that h e K  implies that h E~(A, )  for all sufficiently large n. 
Suppose that the initial distributions of _Zn converge weakly to the initial 
distribution of _Z and that 

lim sup IA,h(x)-Ah(x)l  = 0  (5.2) 
; q ~  o3  X E  ~ 

for all h~K. Then _Z, ~ Z. 

Remark. Kis acore  for A i f K i s  subspace of~A such that A is the 
closure of A Ix- If K is a linear subspace contained in ~A such that K is 
dense and T,: K ~  K, then K is a core for A. 

For the processes V and 4, T,C o2 _c C~, where C 2 is the set of twice con- 
tinuously differentiable functions vanishing at infinity. Moreover, Co 2 is 
dense in Co and is contained in NA so that C 2 is a core for the generators of 

and ~. It then easily follows that C~Y, the infinitely differentiable functions 
of compact support, is also a core. 

We now prove Lemma4.2. Let "~m be the generator and TI m) the 
semigroup of Vm" The generator A of V is given by A Icy=  
-2p ]VI V~?/~?V. The initial distribution for both ~'m and if" is given 
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by 6 ( V -  V~ Thus by Lemma5.1 it suffices to show that 
limm_~O Iq.dmh-Ahjl = 0  for h e  C~. 

We first compute Am. Let us denote by ~(N/(.) = ~r I Vm(0) = V~ 
the expectation for F-m starting at V ~ Then Tlm~h(V ~ --E(y(h(Vm,~)) for 
h e B. Thus 

Amh( V ~ = l im 1 , ~ o t  [/~r - h(V~ ] 

for h e ~ m .  
For a Poisson process the probability of more than one jump in time t 

is of order O(t2). Hence in the expectation we need only consider terms 
where no more than one jump has taken place in time t. Using 
Definition 4.1 we obtain 

Amh(V~ = -f im(V~176176176 ) (5.3) 

We now consider the limit m --* 0. Recall that Pm = p/O~, O; : m/(m + M), and 
V'= V ~ + 2 e ( v -  V~ The Taylor expansion for h around V ~ gives 

h(V') = h ( V  ~ + h'(V~ - V~ + h"(V~ - V~ 2 ] 

+ h"'(P)[4~3(v- V~ 3] 

where 1 2 = V ~ 1 7 6  6 e l 0 ,  1]. Placing this into (5.3) and 
rewriting Nm(V ~ dV') a s  g m ( V  ~ 9) dr, we obtain 

~]mh(V~ = 2p f ~  Iv -  V~ ( v -  V ~ h'(V ~ fro(V)dv 

T 
oo 

+ 2pcr Iv-- V~ (v -  V~ 2 h'(V~ dv 
oo 

4 2 f~  + ~ pe Iv - V~ ( v -  V~ 3 h'"(V)fm(V) dv (5.4) 

In the computations that follow we will use the fact that 

f Iv - V~ (v - VO)kfm(V) dv = f Im~u -- V~ (m~u - V~ du (5.5) 

and we will denote 

f~ " fm(V) dv by (" },,, 
- - o o  f 

oo 
and . f(u) du by ( ' )  (5.6) 

oo 
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Since h e C ~ ,  we may assume h(x)=O for Ixl~>b. Also 
s u p v % ~ l h " ( V ~  First we consider the term 2pceS~03[v-V~ 
(v-1/~ 2 h"(V~ Since the integral vanishes for I V~ >b ,  it tends 
to zero uniformly in V ~ as e ~ 0. 

Next we consider 4pc~2~_03 Iv-V~ (v-V~ For 
I V~ < b +  1, this integral converges to zero uniformly in V ~ Suppose 
I V~ > b + 1 so that V ~ is "firmly" in the complement of the support of h. 
Since V= V~ - V~ v must be such that for the post-collision 
velocity V we have t V[ < b. We may assume that V ~ > b + 1, the case V ~ < 
- ( b +  1) being similar. Then, for such a v, we have using (2.5) 

b vO 1 v ~< ~ - ~ - ( ~ - - s  1) < - V ~ 

for c~ small enough. Therefore, for V ~ > b + 1 

4 f_ o 
-~ p~ Iv- v~ ( v -  v~ 3 h'"(P) f~(v) dv 

4 f ~o IN'( =5 pod Iv- 1/~ V)I fro(v) dv 
- - 0 3  

4 f r o  
~<spcd sup Ih"'(l?)[ (2 ]Vl)4fm(V)dv 

V ~  03 

64 . Ih"( ~<_~_ p~2 sup V)[ m4~'(u 4) 
V ~ N  

which tends to zero as c~--, 0. 
The remaining term is 2p S~ Iv- V~ (v-  V ~ h'(V~ f,~(v)dr. Using 

(2.3) and the fact that f has finite moments, we find that this integral tends 
to - 2 p  [V~ V~ ~ as m ~ 0  uniformly in V ~ Thus 

lira s u p [ f t m h ( V ) - A h ( V ) J = 0  foral l  h~C~ 
m ~ O  V ~  

We now turn to the proof of Lemma 4.3. We would like to simply 
repeat the previous \ steps and apply Lemma5.1. However, some 
modifications are necessary as ~(t) is a nonhomogeneous diffusion process, 
as can be seen from its generator, B,. We can treat this situation by first 
passing to an extended state space. That is, we consider the process 

Ym(t) = (O(t), ~m(t)) (5.7) 
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where O(t)=O+t,  0~>0, and ~m(t)=[Vm(t) -P,~(O(t) )] /x /~ ,  with 

Vm(O) = V ~ fixed, so that different initial values ~m(O) correspond to dif- 
ferent values of ~'m(O). Let y = (0(0), ~m(O))= (0, ~), and let V* = ~'m(O) so 
that V* = x/~ ~ + Vm(O)- 

We show that Ym(t) ~ - o  Y( t )= (O(t), ~(t)), which has the generator 

8 8 8 2 
B = frO- 4p~ I v(0)l ~ + 2p I P(0)I 3 8#~ (5.8) 

Let h: 0~ 2 ~ [~ such that h e C~. Then for the generator ]~m of Ym we have 

Bmh(y) = lira 1 ,~ o t [E(ym)h(Ym(t)) - h(y)]  

for he  ~ ,  where ~m) is the expectation for Ym starting from y. In the 
expectation we consider two types of changes in ~m, those due solely to 
changes in Vm and those due to jumps in F" m. As before we need only con- 
sider those terms where no more than one jump has taken place in time t. 

Using Definition 4.1, we find 

Oh, , 2p f~ 8h 
Bmh(y) = -~ [Y) - - - -~  J o~ Iv - Pm(O)l [v - Vm(O)] fro(V) dv ~ (y) 

__ fc~3 - -  ~m(V*)h(y)+pm Iv Rf~+Vm(O)]lfm(V) 

x h{O, ~ + 2 x/~ [v - (x/~ r + Vm(O))] } dv 

Again expanding h{O, ~ + 2 ~ [ v -  ( x ~  ~ + Pro(0))]} in a Taylor series 
about ~ we obtain 

Oh 2p oo 

p__ f~o Iv-- V*I f,~(v) dv h(y)+ P [ ~~ I v -  Pm(O)--,~f'~ ~] f,,,(V) 

• h(y) + 2 ,/~ [~- ~ ~ - r~(o)] # (y) + 2~[~ -  , /~  C -  pAo)]  ~ 

82h 4 83h } 

where f~ = y + 26~[v -- ~ ~ + V(0)], 6 ~ [0, 1 ] (5.9) 
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By (2.3) and arguments for uniform convergence similar to those used in 
the proof of Lemma 4.2 we find that (5.9) converges as m ~ 0 to 

Oh Oh 3 632h 
#--0(y)-4pr  I9"(O)l-~(y)+Zp 19(0)1 ~ 2  (Y) (5.10) 

uniformly in y. Thus limm ~ o SUpy~ 62 [Bmh(y) - Bh(y)] = 0 and 
Ym ~m~O~ Y (provided they both start from the same point). By projecting 
on the ~ component of Y(t) and considering the initial condition (0, ~ )=  
(0,0), we obtain that ~ m ( t ) ~ o ~ ( t  ), the nonhomogeneous diffusion 
whose generator was given in (3.6). 

6. C L O S E N E S S  O F  P A T H S  

For convenience we assume throughout this section that V ~ 0, and 
fix an interval I =  [0, T]. The goal is now to define a realization V ' ( ~ ' )  of 
the Markov process ~'m(~',,) which is close to the mechanical process 
Vm(~.m) in the sense of (3.8). Such a simultaneous realization or coupling of 
the processes Vm and V m (Ym and ~m) we call a good coupling. 

Recall that the Markov process Vm is a Poisson jump process with 
mean waiting time r -1 and jump distribution determined by 
gin(V, v)d~), i.e., it may be characterized by the (collision) rates 

rm( V, v) = tim(V) gm( V, v) (6.1) 

We obtain a good coupling by constructing V~, in such a way that most 
collisions for V~<--certain "good" collisions are collisions for Vm. On I, 
until Vm(t)~ V(T)/4 any atom with velocity v < if(T)/4 which collides with 
the molecule cannot have collided earlier. Hence until Vm(t)<~ V(T)/4 
collisions between the molecule and atoms with velocity v < if(T)/4 are 
governed by the rates (6.1). Note that for v > V(T)/4 prior collisions may 
be possible, so that (6.1) does not describe the mechanical process even 
before Vm(t ) ~ V(T)/4. 

In the following we denote by (Me) the mechanical molecule, in the 
mechanical process V,,,, and by (Ma) the Markov molecule, undergoing 
the Markov process V'm, which we now define. We use V(V') as the generic 
variable for the velocity of (Me)((Ma)). (Me) and (Ma) have the same 
initial conditions. 

Definition 6. 1. A collision between an atom and the molecule in 
which v < V(T)/4 is called a good collision. A collision in which v ~> V(T)/4 
is called a bad collision. 
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Until (Me) has velocity V~  V(T)/4, good collisions do not occur as 
recollisions (see Remark 6.2). But bad collisions may occur as recollisions, 
either real or "virtual." The latter are those which are impossible given the 
past history of the molecule. 

Let ~ =inf{t~> OlVm(t)<<. V(T)/4}. ~ plays the role of a "decoupling 
time" in the following prescription for V ' .  

1. Given a configuration co, we observe the velocity of (Me), and when 
(Me) has a good collision, the velocity of (Ma) is changed according to 
(2.5) as if it too had the same collision, i.e., collided with an atom with 
the same velocity. 

2. Bad collisions for (Ma) and (Me) occur independently with the rate for 
bad collisions for V" given by (6.1), the collision rate for the Markov 
process, Vm' 

AS long as all collisions are good, and t < 3, V and V' will coincide and 
rm(V',v)=rm(V,v ). Once V ' r  V this is no longer true and the rates for 
(Ma) determined by step 1 will be given by rm(V , v)7~rm(V ', v). Since V" is 
to be a realization of Vm, it should have the same rates as ~'m, namely, 
rm(V', v). Thus step 1 needs some modification. 

3. In order to obtain the correct rates we modify step 1 by ignoring some 
collisions [-they produce no effect o n ( M a ) ]  and adding "extra 
collisions," depending on whether rm(V' , v) is greater or less than 
rm(V,v): 
(a) The rate for the occurrence of these extra collisions is 

Rm(V', V,v)=~ max(rm(V''v)-rm(V'v)'O) for t < v  (6.2) 
[rm(V', v) for t/> z 

(b) The probability that a collision of step 1 counts (i.e., is not 
ignored) is 

rain - - - - - - '  (6.3) pm(V', V, v)---- \rm(V, v) 1 for t < ~  

0 for t > z  

This modification, along with steps 1 and 2, yields a process V" governed 
by the rates rm(V', v) for Vm' 

Note that the realization V" of ~'m has mechanical features in that it is 
tied to Vm by using most collisions of (Me) and it has a stochastic nature 
in that some of its collisions are purely governed by rates rm(V', v). 

Let (f2, ~,~, Pro) be a probability space on which Vm and 1/" satisfying 
the above description are realized: in particular Pm({eSes~ I 
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V'm(t, CO)~ A })=  ~m(A) for all A ~ M(D(I)) and V" differs from Vm only by 
virtue of the rates Rm(V', V, v), the probabilities pm(V', V, v), and bad 
collisions occurring for both (Me) and (Ma). ~ can be viewed as a product 
space ~ = f2 x H, where the stochastic aspects are represented by H so that 
V,,(c3) = Vm(co, h) = V,,(~o) and Pm('xh) = P, ,( .) .  

We now have a good coupling: 

kemma 6.1. For a l l e > 0  

lim P ~ ( { o S ~ l s u p  I V' , , (oS)-  Vm,,(aS)[ > ~ } ) = 0  (6.4) 
rn .-~ O t 6 l 

Following Holley, ~4) we prove the following lemma from which 
Lemma 6.1 follows by a "step-up" argument. 

L e m m a  6.2. If to ~> 0 is such that 

lira # , .{ [~ l  sup [V'm,t(Ch)--Vm,t(Cg)[>~e]}=O (6.5) 
m ~ O O <~ t <~ tO 

for all e > 0, then 

lim #,~{ [c3 ~ ~[  sup ] V~,,~(c3) - V,,,~(~)[/> e] } = 0 (6.6) 
m ~ O  O<~t <~ to+ z 

for all a > 0 where z =  1/(84pV~ 

Remark 6.1. Lemma 6.1 follows easily from Lemma 6.2. Since 
V'(0) = Vm(0), SO that for to = 0, the hypothesis of Lemma 6.2 is fulfilled, 
we obtain (6.4) for I =  [0, z]. Apply Lemma 6.2 with to=z. Then we 
obtain (6.4) for I =  [0, 2z]. Iterating, we obtain (6.4) for any I =  [-0, T]. 

We now turn to the proof of Lemma 6.2. Suppose to satisfies (6.5). We 
may assume that T >  t o + z. Given e > 0, we introduce the stopping time 

t* = inf{t >~ 0[] V'(t)  - Vm(t)l >/~ } (6.7) 

Since V'(t)  and Vm(t) are right continuous 

and 

r (6.8) 

I V~,(s)- Vm(S)l < e for s < t* (6.9) 

Let Gm= {o3 e ~11%~(t) < V'~(t, ~) < 11 - T6V(t), for 0 < t < T } .  By 
Lemma 4.2, we have limm ~o Pro(G,,) = 1. What then must be shown is that 

r lim ~m({t*<~to+Z; [Vm(tm)- Vm(t*)l >~e}C~Gm)=O (6.10) 
m --+ O 

*.< From now on we assume e < V(t)/10. For  t < t m ~ T on Gm we obtain 
4 V ( I )  ~ .  V m ( t  ) < 6 ~ ' ( t ) .  
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Remark 6.2. If (Me) has a good collision, then o n  G m for t < t* ~< T 
such a collision is always an initial collision. This may be seen by tracing 
the paths of (Me) and a colliding atom with velocity v < V(T)/4 from the 
collision point backwards in time and noting that Vm(t)> 4V(t)> V(T)/4. 
Moreover, for m sufficiently small, any such good collision produces a 
post-collision velocity larger than 6if(t) for the atom, so that no future 
recollisions are possible. Thus o n  G m for t < t* ~< T, the only collisions 
which give rise to possible recollisions are the bad collisions where m is 
small. 

We now compare the velocities of (Ma) and (Me). There are several 
effects which cause V~, to differ from Vm: 

1. The Markov process V" (mechanical process Vm) involves bad 
collisions with v > V' (v > V), in which the atoms overtake (Ma) ((Me)) 
from behind. Let E'm(t) (Em(t)) be the total change in V'm(Vm) on [0, t] 
due to such collisions. 

2. Let S'm(t)(Sm(t)) be the total change in V'm(Vm) on [0, t] due to 
bad collisions with V'>v (V>v) ,  in which (Ma) ((Me)) overtakes the 
atom from behind. 

3. There is the change in Vm directly due to "extra collisions" for 
(Ma) and the change in Vm due to good collisions which do not count in 
V~,, the "extra collisions" for (Me). Let A'(A) be the index set for the extra 
collisions for (Ma)((Me)) within [-to, t*].  

4. The effect on V' and the effect on V of those good collisions for 
(Me) which are also counted for Vm depend, respectively, on the 
precollision velocities of (Ma) and (Me), which may differ. Let B be the 
index set for these collisions in [to, t*] .  

Thus, writing W'(i)(W(i)) for the change in the velocity of 
(Ma)((Me)) due to collision i, we have that for t* > to 

t , 
I V m ( t m )  - -  Vm(t~)l  

- Em(tm) ' * - ' * - E ' ( t o ) -  ( E m ( t ~ * )  - E r a ( t o ) )  + S i n ( t i n )  - -  S ' ~ ( t o )  

-- (Sm(t*m)-- Sm(to)) + Z W'm(i)- Z Win(i) 
i~A' i~A 

+ ~ (W'm(i)- Wm(i))+ V'm(to)- Vm(tO) 
i e B  

6 

Z (J) * W m ( t , . )  + I V ' ( t o )  -- V,.( to)l  
j = l  
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where 
(1) , ~  , , m ~  ( t in ,=  IEm(t~)- E'm(to)l 

W m  ( 2 ) ( t * ]  = [Era(t'm) --  E m (  to)l t~m! 

Wm(3ltt* ' * ,-m) = ISm(tm) -- S'm(to)l 

W m  4) *~ (tin, = ISm(t*m) - Sm(to)t 

W~( t* )=  ~ I W'(i)I + ~ I Wm(i)l 
icA '  i~A 

Wm(6)['t*] ~-- 2 I W~(i)-  W,, , ( i ) t  \ ~ rrt ] 
i~B 

Then 

, ,  6{ t {Irm(tm)-- fm(t*m)l>~8}~ ~) (J~ * j = l  m ~  ( t m ) ~  7 

u tv;,(to)-Vm(to)l~>7 u{t*~<to} 

By hypothesis, limm~o Pm({IVg(to)-- gm(to)l)8/7})=O and limm~o 
- , ~  P,,{tm-.~ to} = 0. So what needs to be shown is that 

lim P,~ G m c ~ { t * ~ t o + Z } ~  Wm(tm)>~ = 0  (6.11) 
m ~ O  

for j =  1,..., 6. 
-< * and 8< V(t)/10. The following estimates are for (5 ~ Gm, t ..~ tm, 

j =  1. By the collision equation (2.5) the change in velocity of (Ma) 
due to a collision with an atom with velocity v > V' satisfies 

2rn 
IAvI ~<-~v 

Thus 

where ve is the velocity of the ith atom to hit (Ma) in time I-0, t*]  with v > 
~P(t). 

By the properties of the Poisson random field and the Chebyshev 
inequality we find 

p m ( ~ 2 m  14m v~) 

822/43/1-2-22 
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The rate for these collisions is bounded by pVfm(V)/m. Therefore 

14m 
E 

?)i) ~ - m  9/lO) V(T) ~M 

14pT ~ ~ , 
- ~ J~9/lolP~Ti v2fm(v) dv = O(m ~) 

j = 2 .  Since (Me)  can collide many times with the same atom, we 
here use conservation of momentum to estimate the effect of collisions from 
behind with an atom whose velocity prior to its first collision in [0, t*]  is 
v. Let v(t) be the velocity of this atom at time t. Let 

Iz/pl = m Iv(t*) - V(to)] 

be the absolute total change in momentum of the atom during [to, tm*]. 
Since v(t) is decreasing, it is easy to see that 

- v <~ v ( t * )  <~ v 

so that 

and 

]Apl <~ 2my 

2m IAv) ~<-~-v 

Then, considering collisions for which v >/~9(t), we conclude the estimate 
exactly as for j = 1. 

j =  3. In this estimate (Ma) has collisions with atoms of velocities 
greater than 9(0 /4  but less than V', In the prescription for V ' ,  the rate for 
bad collisions for (Ma) is given by rm(V I, v). On O m an upper bound for 
this rate is given by 2pVOfm(V)/OC. We overestimate this effect by using this 
upper bound over the entire interval [0, T], and integrating over all 
velocities greater than V(T)/4. Let N ( T )  be the number of collisions for 
(Ma) in which 21/0 > V' > v > V(T)/4 in [-0, T]. The change in the velocity 
of (Ma) as given in (2.5) is A V' = 2 ~ ( V ' -  v )<  4~V ~ Therefore 

28~V~ [ "~ O 56pT(V~ 2 ~ 
~< . (2 V ~ f , . (v)  dv - ~ fm(V) dv 

J .~(T)/4 'J 9( T)/4 
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and with 2 = V(T)/4 

fm(V) dv = f(u) du ~ 0 
2 = m - ' / 2  

j =  4. Here we are concerned with the effect on the velocity of (Me) 
due to all initial collisions and possible recollisions with atoms of velocities 
greater than V(T)/4 which are caught from behind by (Me). 

Recall that o n  G m such collisions can" take place at time t only if the 
atom has not yet acquired a velocity greater than 6V(t). The absolute 
change in momentum during [to, t*]  of a colliding atom whose velocity at 
time t is v(t) is given by lap] =m ]v(t*)-V(to)]. Since V~<6V ~ o n  Gin, we 
obtain from (2.5) that v(t*)~< 3V ~ so that lap] <<. 3mV ~ Thus, for the total 
change A V in the velocity of the molecule due to collisions with this atom 
we have A V <~ 3mM- l V o. Thus 

where N(T) is the number of first collisions in [-0, T] between (Me) and 
atoms with velocities v with V(T)/4 < v < 2V ~ for which V< 2V ~ the rate 
for which is bounded by 2pV~ The result therefore follows as for 
j = 3 .  

j =  5. For  the rate of the occurrence of extra collisions including 
"extra collisions" for (Me) we have (v < V(T)/4) 

Rm(V, V, v)=  Irm(V, v)--rm(V, v)l 

=P- tV ' -  VI fro(V) 

Since I V' - V] ~< e for t < tm* we consider the Poisson field X m o n  the t -  v 
space determined by the rates 

R~(~, v)=s 

which dominate the rate for extra collisions. 
Let A V be the change in the velocity due to an (extra) collision either 

for (Ma) or (Me). From (2.5) we get that 

13vI ~ 2~(Ivl + 2 v  ~ 
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Using the Xm process we obtain 

~S~ m G m n ( t * < t o + z ) n  W ~ ( t m ) ~  

i = l  

where Iv,I is the speed of the ith extra collision in [to, to + z) arising from 
the Poisson field Xm. Let Em denote the expectation corresponding to Xm 

Em 2~(Ivel +2I/~ =2~Em (tv/I +2I/~ 
i 1 i 1 

=2~ZI~'(T)/4~---'(ll)I~-2~rO)fra(1))dVlkg oo O~ 

8 

for our choice of z and m sufficiently small. 
Hence the r.h.s, of (6.12) can be estimated as follows. Let 

N 

J =  ~ (Iv/I + 2 v  ~ 
i = 1  

Then Prob(2cJ /> e/7) ~< Prob[J  ~> 2Em(J)] = Prob[J  - Em(J) >~ 
Em(J)'] ~ Em{ [J - Em(J)]2}/[E,,(J)] 2 by Chebyshev's inequality. Using 
correlation functions and some basic properties of Poisson random fields 
we have that for the Xm process 

Era(J) = ( (  Ivl )m Jl- 2V~ Era(N) 

where N is the number of extra collisions in [to, to + z] arising from the X m 

process, and 

Em(J 2) = Em(N)( (Iv I + 2V~ >m q- [Em(U)]2(Ivl + 2V~ 

Thus 

1 ((m y lul +21/~ 2) 
Em{ E J-Em(J)]Z}/[Em(J)]2 = Em(N ) (m y [u[ + 2V ~ m ~ ' ~  0 

since Em(N ) ~ 1/m for the X m process. 
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j = 6. For the effect W~(W;) of a good collision between atom i with 
velocity vi and (Me)[(Ma)] at time s < t* we have, using (2.5), 

[W;-  Wi[ = [V'(s )+2c~[vi-  V ' ( s - ) ] -  V'(s-) 

- { V ( s - ) + 2 c ~ [ v i -  v(s ) ] -  V(s )}1 

= 2c~ [ V ' ( s -  ) - V(s )[ ~< 2ee by (6.9) 

H e n c e  [ / v ( 6 ) ( t g ~ ]  ~ 2~ZeNm(z ) where N,n(z) is the number of collisions invol- ' '  m \ ~ m J  

ving (Ma) in [to, to + z]. On G m the total rate of collisions for the Markov 
process is bounded by p((  [v[ ),~ + 2V~ Letting ?~m(z) be the number of 
points in [to, to + z] for the Poisson process with rate p ( ( )q  )m + 2V~ 
we obtain 

Since 

2E[N,~,(z)] 2zp(([Vl)m+2VO)< ~ 1 
14~ 

for our choice of z, and m sufficiently small, we have 

Pr~ {[ Nm(Z) ) l -~l}  <~ Prob{ [Nm(z) >j 2E(Nm(z) ) ] } 

= Prob{ [N,.(z) - E(Nm(z)) >>- E(Nm(z)) ] } 

E{ INto(z)  - E N m ( z ) ] 2 } / [ E N m ( z ) ]  2 

1 
- -  - -  ) 0 

E~,.(z) ,.~o 

This completes the proof of Lemma 6.2 and hence of Lemma 6.1 and 
Theorem 3.1. 
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We now turn to the proof of Theorem 3.2, which concerns the 
process. Theorem 3.2 follows from Lemma 6.3 below which follows from 
Lemma 6.4. 

We defined ~,, = (Vm-- ~'m)/X/~ and ~m = (Vm- ~'m)/X/~. We obtain a 
good coupling ~;, on (s ~-, Pro) satisfying 

lim Pm{[O3E~'21SHp I~m,t(~)--~m,t((79)[ ~>8]} ---=0 
m ~ O  t c I  

by using V ' ,  namely, we let r = (V'm- f'm)/X/-~. 

Lemma 6.3. For a l l e > 0  

lim Pm{[c0~s~lsup I~tm, t ( ( f 3 ) - - ( m , t ( ( ~ ) ) t  /~]} =0 
r n ~ O  t ~ I  

Lemma 6.4. If to >/0 is such that 

lim P m { E e S ~ [  sup I~;~,,(~)--~.m,,(O~)l~]}=0 
m ~ O O <~ t <~ to 

for all e > 0, then 

lim Pm{Ee3~l sup [#_~,,t(e3)-~m,,(03)l >~e]} =0  
m ~ O  O<~ t<~to+ z 

for all e > 0, where z = 1/(84pV~ 
That  Lemma 6.4 implies Lemma 6.3 follows as in Remark 6.1. To 

prove Lemma 6.4 it will suffice to establish Lemma 6.2 modified by replac- 
ing ~ by e o = x / ~ e ,  since [~,,t(cb)-~m,t(o3)[~>e is equivalent to 
[ V' , , (eS)-  Vm,t(d))l >~ ~ ~. Now the final estimate for j =  6 did not involve 
e, while the final estimate for j =  5 involves e only through Era(N), which 
will now behave like 1/x/-m. The final estimates of the remaining effects 
now assume the form 

K f~ vf~(v) dv 
0 V ( T ) / 4  

where i = 0, 2 and K is a constant, so we must show that these integrals are 
o(x/-m ). To do this observe that for 6 ~ ~ +, 2 > 0 
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Thus 

K o~ dfm(V) dv = ( m T u ) i f ( u )  du 
~0 V(T)/4 -~ V(T)/4 

= 

for 76 > 1, since all moments o f f (v )  are finite. This completes the proof. 
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